Before running the Dataverse installation script, you must install and configure Linux, Java, Glassfish, PostgreSQL, Solr, and jq. The other software listed below is optional but can provide useful features.

After following all the steps below, you can proceed to the Installation section.

You may find it helpful to look at how the configuration is done automatically by various tools such as Vagrant, Puppet, or Ansible. See the Preparation section for pointers on diving into these scripts.


We assume you plan to run Dataverse on Linux and we recommend RHEL/CentOS, which is the Linux distribution tested by the Dataverse development team. Please be aware that while el7 (RHEL/CentOS 7) is the recommended platform, the steps below were orginally written for el6 and may need to be updated (please feel free to make a pull request!).


Dataverse requires Java SE 8 (8u74/JDK 1.8.0u74 or higher).

Installing Java

Dataverse should run fine with only the Java Runtime Environment (JRE) installed, but installing the Java Development Kit (JDK) is recommended so that useful tools for troubleshooting production environments are available. We recommend using Oracle JDK or OpenJDK.

The Oracle JDK can be downloaded from

On a RHEL/CentOS, install OpenJDK (devel version) using yum:

# yum install java-1.8.0-openjdk-devel

If you have multiple versions of Java installed, Java 8 should be the default when java is invoked from the command line. You can test this by running java -version.

On RHEL/CentOS you can make Java 8 the default with the alternatives command, having it prompt you to select the version of Java from a list:

# alternatives --config java

If you don’t want to be prompted, here is an example of the non-interactive invocation:

# alternatives --set java /usr/lib/jvm/jre-1.8.0-openjdk.x86_64/bin/java


Glassfish Version 4.1 is required. There are known issues with newer versions of the Glassfish 4.x series so it should be avoided. For details, see . The issue we are using the track support for Glassfish 5 is .

Installing Glassfish

Note: The Dataverse installer need not be run as root, and it is recommended that Glassfish not run as root either. We suggest the creation of a glassfish service account for this purpose.

  • Download and install Glassfish (installed in /usr/local/glassfish4 in the example commands below):

    # wget
    # unzip
    # mv glassfish4 /usr/local

If you intend to install and run Glassfish under a service account (and we hope you do), chown -R the Glassfish hierarchy to root to protect it but give the service account access to the below directories:

  • Set service account permissions:

    # chown -R root:root /usr/local/glassfish4
    # chown glassfish /usr/local/glassfish4/glassfish/lib
    # chown -R glassfish:glassfish /usr/local/glassfish4/glassfish/domains/domain1

After installation, you may chown the lib/ directory back to root; the installer only needs write access to copy the JDBC driver into that directory.

Once Glassfish is installed, you’ll need a newer version of the Weld library (v2.2.10.SP1) to fix a serious issue in the library supplied with Glassfish 4.1 (see for details). If you plan to front Glassfish with Apache you must also patch Grizzly as explained in the Shibboleth section.

  • Remove the stock Weld jar; download Weld v2.2.10.SP1 and install it in the modules folder:

    # cd /usr/local/glassfish4/glassfish/modules
    # rm weld-osgi-bundle.jar
    # wget
  • Change from -client to -server under <jvm-options>-client</jvm-options>:

    # vim /usr/local/glassfish4/glassfish/domains/domain1/config/domain.xml

This recommendation comes from among other places.

  • Start Glassfish and verify the Weld version:

    # /usr/local/glassfish4/bin/asadmin start-domain
    # /usr/local/glassfish4/bin/asadmin osgi lb | grep 'Weld OSGi Bundle'

The Certificate Authority (CA) certificate bundle file from Glassfish contains certs that expired in August 2018, causing problems with ORCID login.

  • The actual expiration date is August 22, 2018, which you can see with the following command:

    # keytool -list -v -keystore /usr/local/glassfish4/glassfish/domains/domain1/config/cacerts.jks
  • Overwrite Glassfish’s CA certs file with the file that ships with the operating system and restart Glassfish:

    # cp /etc/pki/ca-trust/extracted/java/cacerts /usr/local/glassfish4/glassfish/domains/domain1/config/cacerts.jks
    # /usr/local/glassfish4/bin/asadmin stop-domain
    # /usr/local/glassfish4/bin/asadmin start-domain

Launching Glassfish on system boot

The Dataverse installation script will start Glassfish if necessary, but you may find the following scripts helpful to launch Glassfish start automatically on boot.

  • This Systemd file may be serve as a reference for systems using Systemd (such as RHEL/CentOS 7 or Ubuntu 16+)
  • This init script may be useful for RHEL/CentOS 6 or Ubuntu >= 14 if you’re using a Glassfish service account, or
  • This Glassfish init script may be helpful if you’re just going to run Glassfish as root.

It is not necessary for Glassfish to be running before you execute the Dataverse installation script; it will start Glassfish for you.

Please note that you must run Glassfish in an English locale. If you are using something like LANG=de_DE.UTF-8, ingest of tabular data will fail with the message “RoundRoutines:decimal separator no in right place”.

Also note that Glassfish may utilize more than the default number of file descriptors, especially when running batch jobs such as harvesting. We have increased ours by adding ulimit -n 32768 to our glassfish init script. On operating systems which use systemd such as RHEL or CentOS 7, file descriptor limits may be increased by adding a line like LimitNOFILE=32768 to the systemd unit file. You may adjust the file descriptor limits on running processes by using the prlimit utility:

# sudo prlimit --pid pid --nofile=32768:32768


Installing PostgreSQL

Version 9.3 is required. Previous versions have not been tested.

Version 9.6 is strongly recommended:

# yum install -y
# yum makecache fast
# yum install -y postgresql96-server
# /usr/pgsql-9.6/bin/postgresql96-setup initdb
# /usr/bin/systemctl start postgresql-9.6
# /usr/bin/systemctl enable postgresql-9.6

Note that the steps above are specific to RHEL/CentOS 7. For RHEL/CentOS 6 use:

# yum install -y
# yum makecache fast
# yum install -y postgresql96-server
# service postgresql-9.6 initdb
# service postgresql-9.6 start

Configuring Database Access for the Dataverse Application (and the Dataverse Installer)

  • The application and the installer script will be connecting to PostgreSQL over TCP/IP, using password authentication. In this section we explain how to configure PostgreSQL to accept these connections.

  • If PostgreSQL is running on the same server as Glassfish, find the localhost ( entry that’s already in the pg_hba.conf and modify it to look like this:

    host all all md5

    Once you are done with the prerequisites and run the installer script (documented here: Installation) it will ask you to enter the address of the Postgres server. Simply accept the default value there.

  • The Dataverse installer script will need to connect to PostgreSQL as the admin user, in order to create and set up the database that the Dataverse will be using. If for whatever reason it is failing to connect (for example, if you don’t know/remember what your Postgres admin password is), you may choose to temporarily disable all the access restrictions on localhost connections, by changing the above line to:

    host all all trust

    Note that this rule opens access to the database server via localhost only. Still, in a production environment, this may constitute a security risk. So you will likely want to change it back to “md5” once the installer has finished.

  • If the Dataverse application is running on a different server, you will need to add a new entry to the pg_hba.conf granting it access by its network address:

    host all all [ADDRESS] md5

    Where [ADDRESS] is the numeric IP address of the Glassfish server. Enter this address when the installer asks for the PostgreSQL server address.

  • In some distributions, PostgreSQL is pre-configured so that it doesn’t accept network connections at all. Check that the listen_address line in the configuration file postgresql.conf is not commented out and looks like this:


    The file postgresql.conf will be located in the same directory as the pg_hba.conf above.

  • Important: PostgreSQL must be restarted for the configuration changes to take effect! On RHEL/CentOS 7 and similar (provided you installed Postgres as instructed above):

    # systemctl restart postgresql-9.6

    On MacOS X a “Reload Configuration” icon is usually supplied in the PostgreSQL application folder. Or you could look up the process id of the PostgreSQL postmaster process, and send it the SIGHUP signal:

    kill -1 PROCESS_ID


The Dataverse search index is powered by Solr.

Installing Solr

You should not run Solr as root. Create a user called solr and a directory to install Solr into:

useradd solr
mkdir /usr/local/solr
chown solr:solr /usr/local/solr

Become the solr user and then download and configure Solr:

su - solr
cd /usr/local/solr
tar xvzf solr-7.3.1.tgz
cd solr-7.3.1
cp -r server/solr/configsets/_default server/solr/collection1

You should already have a “” file that you downloaded from . Unzip it into /tmp. Then copy the files into place:

cp /tmp/dvinstall/schema.xml /usr/local/solr/solr-7.3.1/server/solr/collection1/conf
cp /tmp/dvinstall/solrconfig.xml /usr/local/solr/solr-7.3.1/server/solr/collection1/conf

Note: Dataverse has customized Solr to boost results that come from certain indexed elements inside Dataverse, for example prioritizing results from Dataverses over Datasets. If you would like to remove this, edit your solrconfig.xml and remove the <str name="qf"> element and its contents. If you have ideas about how this boosting could be improved, feel free to contact us through our Google Group!forum/dataverse-dev .

Dataverse requires a change to the jetty.xml file that ships with Solr. Edit /usr/local/solr/solr-7.3.1/server/etc/jetty.xml , increasing requestHeaderSize from 8192 to 102400

Solr will warn about needing to increase the number of file descriptors and max processes in a production environment but will still run with defaults. We have increased these values to the recommended levels by adding ulimit -n 65000 to the init script, and the following to /etc/security/limits.conf:

solr soft nproc 65000
solr hard nproc 65000
solr soft nofile 65000
solr hard nofile 65000

On operating systems which use systemd such as RHEL or CentOS 7, you may then add a line like LimitNOFILE=65000 for the number of open file descriptors and a line with LimitNPROC=65000 for the max processes to the systemd unit file, or adjust the limits on a running process using the prlimit tool:

# sudo prlimit --pid pid --nofile=65000:65000

Solr launches asynchronously and attempts to use the lsof binary to watch for its own availability. Installation of this package isn’t required but will prevent a warning in the log at startup.

Finally, you may start Solr and create the core that will be used to manage search information:

cd /usr/local/solr/solr-7.3.1
bin/solr start
bin/solr create_core -c collection1 -d server/solr/collection1/conf/

Solr Init Script

For systems running systemd, as root, download solr.service and place it in /tmp. Then start Solr and configure it to start at boot with the following commands:

cp /tmp/solr.service /usr/lib/systemd/system
systemctl start solr.service
systemctl enable solr.service

For systems using init.d, download this Solr init script and place it in /tmp. Then start Solr and configure it to start at boot with the following commands:

cp /tmp/solr /etc/init.d
service solr start
chkconfig solr on

Securing Solr

Solr must be firewalled off from all hosts except the server(s) running Dataverse. Otherwise, any host that can reach the Solr port (8983 by default) can add or delete data, search unpublished data, and even reconfigure Solr. For more information, please see


Installing jq

jq is a command line tool for parsing JSON output that is used by the Dataverse installation script. explains various ways of installing it, but a relatively straightforward method is described below. Please note that you must download the 64- or 32-bit version based on your architecture. In the example below, the 64-bit version is installed. We confirm it’s executable and in our $PATH by checking the version (1.4 or higher should be fine):

# cd /usr/bin
# wget
# chmod +x jq
# jq --version


Dataverse uses ImageMagick to generate thumbnail previews of PDF files. This is an optional component, meaning that if you don’t have ImageMagick installed, there will be no thumbnails for PDF files, in the search results and on the dataset pages; but everything else will be working. (Thumbnail previews for non-PDF image files are generated using standard Java libraries and do not require any special installation steps).

Installing and configuring ImageMagick

On a Red Hat and similar Linux distributions, you can install ImageMagick with something like:

# yum install ImageMagick

(most RedHat systems will have it pre-installed). When installed using standard yum mechanism, above, the executable for the ImageMagick convert utility will be located at /usr/bin/convert. No further configuration steps will then be required.

On MacOS you can compile ImageMagick from sources, or use one of the popular installation frameworks, such as brew.

If the installed location of the convert executable is different from /usr/bin/convert, you will also need to specify it in your Glassfish configuration using the JVM option, below. For example:


(see the Configuration section for more information on the JVM options)


Dataverse uses R to handle tabular data files. The instructions below describe a minimal R installation. It will allow you to ingest R (.RData) files as tabular data; to export tabular data as .RData files; and to run Data Explorer (specifically, R is used to generate .prep metadata files that Data Explorer uses). R can be considered an optional component, meaning that if you don’t have R installed, you will still be able to run and use Dataverse - but the functionality specific to tabular data mentioned above will not be available to your users. Note that if you choose to also install TwoRavens, it will require some extra R components and libraries. Please consult the instructions in the TowRavens section of the Installation Guide.

Installing R

Can be installed with yum:

yum install R-core R-core-devel

EPEL distribution is strongly recommended. The version of R currently available from epel6 and epel7 is 3.5; it has been tested and is known to work on RedHat and CentOS versions 6 and 7.

If yum isn’t configured to use EPEL repositories ( ):

RHEL/CentOS users can install the RPM epel-release. For RHEL/CentOS 7:

yum install

RHEL/CentOS users can install the RPM epel-release. For RHEL/CentOS 6:

yum install

RHEL users will want to log in to their organization’s respective RHN interface, find the particular machine in question and:

  • click on “Subscribed Channels: Alter Channel Subscriptions”
  • enable EPEL, Server Extras, Server Optional

Installing the required R libraries

The following R packages (libraries) are required:


Install them following the normal R package installation procedures. For example, with the following R commands:

install.packages("R2HTML", repos="", lib="/usr/lib64/R/library" )
install.packages("rjson", repos="", lib="/usr/lib64/R/library" )
install.packages("DescTools", repos="", lib="/usr/lib64/R/library" )
install.packages("Rserve", repos="", lib="/usr/lib64/R/library" )
install.packages("haven", repos="", lib="/usr/lib64/R/library" )


Dataverse uses Rserve to communicate to R. Rserve is installed as a library package, as described in the step above. It runs as a daemon process on the server, accepting network connections on a dedicated port. This requires some extra configuration and we provide a script (scripts/r/rserve/ for setting it up. Run the script as follows (as root):

cd <DATAVERSE SOURCE TREE>/scripts/r/rserve

The setup script will create a system user rserve that will run the daemon process. It will install the startup script for the daemon (/etc/init.d/rserve), so that it gets started automatically when the system boots. This is an init.d-style startup file. If this is a RedHat/CentOS 7 system, you may want to use the systemctl-style file rserve.service instead. (Copy it into the /usr/lib/systemd/system/ directory)

Note that the setup will also set the Rserve password to “rserve”. Rserve daemon runs under a non-privileged user id, so there’s not much potential for security damage through unauthorized access. It is however still a good idea to change the password. The password is specified in /etc/Rserv.pwd. You can consult Rserve documentation for more information on password encryption and access security.

You should already have the following 4 JVM options added to your domain.xml by the Dataverse installer:


If you have changed the password, make sure it is correctly specified in the dataverse.rserve.password option above. If Rserve is running on a host that’s different from your Dataverse server, change the option above as well (and make sure the port 6311 on the Rserve host is not firewalled from your Dataverse host).

Counter Processor

Counter Processor is required to enable Make Data Count metrics in Dataverse. See the Make Data Count section of the Admin Guide for a description of this feature. Counter Processor is open source and we will be downloading it from

Installing Counter Processor

Counter Processor has only been tested on el7 (see “Linux” above). Please note that a scripted installation using Ansible is mentioned in the Make Data Count section of the Developer Guide.

As root, download and install Counter Processor:

cd /usr/local
tar xvfz v0.0.1.tar.gz

As root, change to the Counter Processor directory you just created, download the GeoLite2-Country tarball, untar it, and copy the geoip database into place:

cd /usr/local/counter-processor-0.0.1
tar xvfz GeoLite2-Country.tar.gz
cp GeoLite2-Country_*/GeoLite2-Country.mmdb maxmind_geoip

As root, create a “counter” user and change ownership of Counter Processor directory to this new user:

useradd counter
chown -R counter:counter /usr/local/counter-processor-0.0.1

Installing Counter Processor Python Requirements

Counter Processor requires Python 3.6.4 or higher. The following commands are intended to be run as root but we are aware that Pythonistas might prefer fancy virtualenv or similar setups. Pull requests are welcome to improve these steps!

Enable the EPEL repo if you haven’t already:

yum install

Install Python 3.6:

yum install python36

Install Counter Processor Python requirements:

python3.6 -m ensurepip
cd /usr/local/counter-processor-0.0.1
pip3 install -r requirements.txt

See the Make Data Count section of the Admin Guide for how to configure and run Counter Processor.

Next Steps

Now that you have all the prerequisites in place, you can proceed to the Installation section.